Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Infect Control Hosp Epidemiol ; : 1-7, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-2302506

ABSTRACT

OBJECTIVE: To assess coronavirus disease 2019 (COVID-19) infection policies at leading US medical centers in the context of the initial wave of the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) omicron variant. DESIGN: Electronic survey study eliciting hospital policies on masking, personal protective equipment, cohorting, airborne-infection isolation rooms (AIIRs), portable HEPA filters, and patient and employee testing. SETTING AND PARTICIPANTS: "Hospital epidemiologists from U.S. News top 20 hospitals and 10 hospitals in the CDC Prevention Epicenters program."  As it is currently written, it implies all 30 hospitals are from the CDC Prevention Epicenters program, but that only applies to 10 hospitals.  Alternatively, we could just say "Hospital epidemiologists from 30 leading US hospitals." METHODS: Survey results were reported using descriptive statistics. RESULTS: Of 30 hospital epidemiologists surveyed, 23 (77%) completed the survey between February 15 and March 3, 2022. Among the responding hospitals, 18 (78%) used medical masks for universal masking and 5 (22%) used N95 respirators. 16 hospitals (70%) required universal eye protection. 22 hospitals (96%) used N95s for routine COVID-19 care and 1 (4%) reserved N95s for aerosol-generating procedures. 2 responding hospitals (9%) utilized dedicated COVID-19 wards; 8 (35%) used mixed COVID-19 and non-COVID-19 units; and 13 (57%) used both dedicated and mixed units. 4 hospitals (17%) used AIIRs for all COVID-19 patients, 10 (43%) prioritized AIIRs for aerosol-generating procedures, 3 (13%) used alternate risk-stratification criteria (not based on aerosol-generating procedures), and 6 (26%) did not routinely use AIIRs. 9 hospitals (39%) did not use portable HEPA filters, but 14 (61%) used them for various indications, most commonly as substitutes for AIIRs when unavailable or for specific high-risk areas or situations. 21 hospitals (91%) tested asymptomatic patients on admission, but postadmission testing strategies and preferred specimen sites varied substantially. 5 hospitals (22%) required regular testing of unvaccinated employees and 1 hospital (4%) reported mandatory weekly testing even for vaccinated employees during the SARS-CoV-2 omicron surge. CONCLUSIONS: COVID-19 infection control practices in leading hospitals vary substantially. Clearer public health guidance and transparency around hospital policies may facilitate more consistent national standards.

4.
Curr Opin Infect Dis ; 35(4): 353-362, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1948611

ABSTRACT

PURPOSE OF REVIEW: COVID-19 has catalyzed a wealth of new data on the science of respiratory pathogen transmission and revealed opportunities to enhance infection prevention practices in healthcare settings. RECENT FINDINGS: New data refute the traditional division between droplet vs airborne transmission and clarify the central role of aerosols in spreading all respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), even in the absence of so-called 'aerosol-generating procedures' (AGPs). Indeed, most AGPs generate fewer aerosols than talking, labored breathing, or coughing. Risk factors for transmission include high viral loads, symptoms, proximity, prolonged exposure, lack of masking, and poor ventilation. Testing all patients on admission and thereafter can identify early occult infections and prevent hospital-based clusters. Additional prevention strategies include universal masking, encouraging universal vaccination, preferential use of N95 respirators when community rates are high, improving native ventilation, utilizing portable high-efficiency particulate air filters when ventilation is limited, and minimizing room sharing when possible. SUMMARY: Multifaceted infection prevention programs that include universal testing, masking, vaccination, and enhanced ventilation can minimize nosocomial SARS-CoV-2 infections in patients and workplace infections in healthcare personnel. Extending these insights to other respiratory viruses may further increase the safety of healthcare and ready hospitals for novel respiratory viruses that may emerge in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , COVID-19/prevention & control , Delivery of Health Care , Health Personnel , Humans
5.
Clin Infect Dis ; 74(12): 2230-2233, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1922208

ABSTRACT

We compared healthcare worker severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates between March and August 2020 in 2 similar hospitals with high vs low airborne infection isolation room utilization rates but otherwise identical infection control policies. We found no difference in healthcare worker infection rates between the 2 hospitals, nor between patient-facing vs non-patient-facing providers.


Subject(s)
COVID-19 , SARS-CoV-2 , Health Personnel , Hospitals , Humans , Infection Control
6.
7.
Clin Infect Dis ; 75(1): e296-e299, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1769233

ABSTRACT

The highly contagious severe acute respiratory syndrome coronavirus 2 Omicron variant increases risk for nosocomial transmission despite universal masking, admission testing, and symptom screening. We report large increases in hospital-onset infections and 2 unit-based clusters. The clusters rapidly abated after instituting universal N95 respirators and daily testing. Broader use of these strategies may prevent nosocomial transmissions.


Subject(s)
COVID-19 , Cross Infection , COVID-19/prevention & control , Cross Infection/prevention & control , Hospitals , Humans , N95 Respirators , SARS-CoV-2
8.
Clin Infect Dis ; 74(10): 1748-1754, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1708916

ABSTRACT

BACKGROUND: The profound changes wrought by coronavirus disease 2019 (COVID-19) on routine hospital operations may have influenced performance on hospital measures, including healthcare-associated infections (HAIs). We aimed to evaluate the association between COVID-19 surges and HAI and cluster rates. METHODS: In 148 HCA Healthcare-affiliated hospitals, from 1 March 2020 to 30 September 2020, and a subset of hospitals with microbiology and cluster data through 31 December 2020, we evaluated the association between COVID-19 surges and HAIs, hospital-onset pathogens, and cluster rates using negative binomial mixed models. To account for local variation in COVID-19 pandemic surge timing, we included the number of discharges with a laboratory-confirmed COVID-19 diagnosis per staffed bed per month. RESULTS: Central line-associated blood stream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia increased as COVID-19 burden increased. There were 60% (95% confidence interval [CI]: 23-108%) more CLABSI, 43% (95% CI: 8-90%) more CAUTI, and 44% (95% CI: 10-88%) more cases of MRSA bacteremia than expected over 7 months based on predicted HAIs had there not been COVID-19 cases. Clostridioides difficile infection was not significantly associated with COVID-19 burden. Microbiology data from 81 of the hospitals corroborated the findings. Notably, rates of hospital-onset bloodstream infections and multidrug resistant organisms, including MRSA, vancomycin-resistant enterococcus, and Gram-negative organisms, were each significantly associated with COVID-19 surges. Finally, clusters of hospital-onset pathogens increased as the COVID-19 burden increased. CONCLUSIONS: COVID-19 surges adversely impact HAI rates and clusters of infections within hospitals, emphasizing the need for balancing COVID-related demands with routine hospital infection prevention.


Subject(s)
Bacteremia , COVID-19 , Catheter-Related Infections , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Ventilator-Associated , Urinary Tract Infections , Vancomycin-Resistant Enterococci , Bacteremia/epidemiology , Bacteremia/prevention & control , COVID-19/epidemiology , COVID-19 Testing , Catheter-Related Infections/prevention & control , Cross Infection/microbiology , Delivery of Health Care , Humans , Pandemics , Pneumonia, Ventilator-Associated/microbiology , Urinary Tract Infections/epidemiology
9.
Clin Infect Dis ; 74(3): 529-531, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684549

ABSTRACT

The Centers for Disease Control and Prevention recommends N95 respirators for all providers who see patients with possible or confirmed coronavirus disease 2019 (COVID-19). We suggest that N95 respirators may be just as important for the care of patients without suspected COVID-19 when community incidence rates are high. This is because severe acute respiratory syndrome coronavirus 2 is most contagious before symptom onset. Ironically, by the time patients are sick enough to be admitted to the hospital with COVID-19, they tend to be less contagious. The greatest threat of transmission in healthcare facilities may therefore be patients and healthcare workers with early occult infection. N95 respirators' superior fit and filtration provide superior exposure protection for healthcare providers seeing patients with early undiagnosed infection and superior source control to protect patients from healthcare workers with early undiagnosed infection. The probability of occult infection in patients and healthcare workers is greatest when community incidence rates are high. Universal use of N95 respirators may help decrease nosocomial transmission at such times.


Subject(s)
COVID-19 , Delivery of Health Care , Humans , Masks , N95 Respirators , SARS-CoV-2
10.
Open forum infectious diseases ; 8(Suppl 1):S102-S103, 2021.
Article in English | EuropePMC | ID: covidwho-1563857

ABSTRACT

Background The profound changes wrought by COVID-19 on routine hospital operations may have influenced performance on hospital measures, including healthcare-associated infections (HAIs). Objective Evaluate the association between COVID-19 surges and HAI or cluster rates Methods Design: Prospective cohort study Setting 148 HCA Healthcare-affiliated hospitals, 3/1/2020-9/30/2020, and a subset of hospitals with microbiology and cluster data through 12/31/2020 Patients All inpatients Measurements We evaluated the association between COVID-19 surges and HAIs, hospital-onset pathogens, and cluster rates using negative binomial mixed models. To account for local variation in COVID-19 pandemic surge timing, we included the number of discharges with a laboratory-confirmed COVID-19 diagnosis per staffed bed per month at each hospital. Results Central line-associated blood stream infections (CLABSI), catheter-associated urinary tract infections (CAUTI), and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia increased as COVID-19 burden increased (P ≤ 0.001 for all), with 60% (95% CI, 23 to 108%) more CLABSI, 43% (95% CI, 8 to 90%) more CAUTI, and 44% (95% CI, 10 to 88%) more cases of MRSA bacteremia than expected over 7 months based on predicted HAIs had there not been COVID-19 cases. Clostridioides difficile infection (CDI) was not significantly associated with COVID-19 burden. Microbiology data from 81 of the hospitals corroborated the findings. Notably, rates of hospital-onset bloodstream infections and multidrug resistant organisms, including MRSA, vancomycin-resistant enterococcus and Gram-negative organisms were each significantly associated with COVID-19 surges (P < 0.05 for all). Finally, clusters of hospital-onset pathogens increased as the COVID-19 burden increased (P = 0.02). Limitations Variations in surveillance and reporting may affect HAI data. Table 1. Effect of an increase in number of COVID-19 discharges on HAIs and hospital-onset pathogens Figure 1. Predicted mean HAI rates as COVID-19 discharges increase Predicted mean HAI rate by increasing monthly COVID-19 discharges. Panel a. CLABSI, Panel b, CAUTI Panel c. MRSA Bacteremia, Panel d. CDI. Data are stratified by small, medium and large hospitals. Figure 2. Monthly comparison of COVID discharges to clusters COVID-19 discharges and the number of clusters of hospital-onset pathogens are correlated throughout the pandemic. Conclusion COVID-19 surges adversely impact HAI rates and clusters of infections within hospitals, emphasizing the need for balancing COVID-related demands with routine hospital infection prevention. Disclosures Kenneth Sands, MD, MPH, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Susan S. Huang, MD, MPH, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products)Stryker (Sage) (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products)Xttrium (Other Financial or Material Support, Conducted studies in which participating hospitals and nursing homes received contributed antiseptic and cleaning products) Ken Kleinman, PhD, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products) Edward Septimus, MD, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products)Molnlycke (Ot er Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic products) Eunice J. Blanchard, MSN RN, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Russell Poland, PhD, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Micaela H. Coady, MS, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Deborah S. Yokoe, MD, MPH, Nothing to disclose Julia Moody, MS, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Richard Platt, MD, MSc, Medline (Research Grant or Support, Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product) Jonathan B. Perlin, MD, PhD, Medline (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product)Molnlycke (Other Financial or Material Support, Conducted studies in which participating hospitals received contributed antiseptic product)

11.
Ann Intern Med ; 174(12): 1710-1718, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506230

ABSTRACT

Policies to prevent respiratory virus transmission in health care settings have traditionally divided organisms into Droplet versus Airborne categories. Droplet organisms (for example, influenza) are said to be transmitted via large respiratory secretions that rapidly fall to the ground within 1 to 2 meters and are adequately blocked by surgical masks. Airborne pathogens (for example, measles), by contrast, are transmitted by aerosols that are small enough and light enough to carry beyond 2 meters and to penetrate the gaps between masks and faces; health care workers are advised to wear N95 respirators and to place these patients in negative-pressure rooms. Respirators and negative-pressure rooms are also recommended when caring for patients with influenza or SARS-CoV-2 who are undergoing "aerosol-generating procedures," such as intubation. An increasing body of evidence, however, questions this framework. People routinely emit respiratory particles in a range of sizes, but most are aerosols, and most procedures do not generate meaningfully more aerosols than ordinary breathing, and far fewer than coughing, exercise, or labored breathing. Most transmission nonetheless occurs at close range because virus-laden aerosols are most concentrated at the source; they then diffuse and dilute with distance, making long-distance transmission rare in well-ventilated spaces. The primary risk factors for nosocomial transmission are community incidence rates, viral load, symptoms, proximity, duration of exposure, and poor ventilation. Failure to appreciate these factors may lead to underappreciation of some risks (for example, overestimation of the protection provided by medical masks, insufficient attention to ventilation) or misallocation of limited resources (for example, reserving N95 respirators and negative-pressure rooms only for aerosol-generating procedures or requiring negative-pressure rooms for all patients with SARS-CoV-2 infection regardless of stage of illness). Enhanced understanding of the factors governing respiratory pathogen transmission may inform the development of more effective policies to prevent nosocomial transmission of respiratory pathogens.


Subject(s)
Infection Control/methods , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Aerosols , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Cross Infection/prevention & control , Cross Infection/virology , Health Policy , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Influenza, Human/prevention & control , Influenza, Human/transmission , Influenza, Human/virology , Masks , Personnel, Hospital , SARS-CoV-2 , United States/epidemiology , Ventilation
12.
Clin Infect Dis ; 73(9): 1693-1695, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1501057

ABSTRACT

We describe 3 instances of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission despite medical masks and eye protection, including transmission despite the source person being masked, transmission despite the exposed person being masked, and transmission despite both parties being masked. Whole genome sequencing confirmed perfect homology between source and exposed persons' viruses in all cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Delivery of Health Care , Humans , Masks
13.
Clin Infect Dis ; 73(7): e1878-e1880, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455258

ABSTRACT

Many patients are fearful of acquiring coronavirus disease 2019 (COVID-19) in hospitals and clinics. We characterized the risk of COVID-19 among 226 patients exposed to healthcare workers with confirmed COVID-19. One patient may have been infected, suggesting that the risk of COVID-19 transmission from healthcare workers to patients is generally low.


Subject(s)
COVID-19 , Health Personnel , Humans , SARS-CoV-2
15.
Open Forum Infect Dis ; 8(7): ofab194, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1328932

ABSTRACT

We prospectively assessed 536 hospitalized patients with positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction tests for infectiousness based on symptoms, cycle thresholds, and SARS-CoV-2 history, with repeat testing and serologies in select cases. One hundred forty-eight (28%) patients were deemed noninfectious, most with evidence of prior infection, and managed on standard precautions without evidence of transmission.

17.
Oncologist ; 26(8): 685-693, 2021 08.
Article in English | MEDLINE | ID: covidwho-1184612

ABSTRACT

BACKGROUND: Early reports suggested increased mortality from COVID-19 in patients with cancer but lacked rigorous comparisons to patients without cancer. We investigated whether a current cancer diagnosis or cancer history is an independent risk factor for death in hospitalized patients with COVID-19. PATIENTS AND METHODS: We identified patients with a history of cancer admitted to two large hospitals between March 13, 2020, and May 10, 2020, with laboratory-confirmed COVID-19 and matched them 1:2 to patients without a history of cancer. RESULTS: Men made up 56.2% of the population, with a median age of 69 years (range, 30-96). The median time since cancer diagnosis was 35.6 months (range, 0.39-435); 80% had a solid tumor, and 20% had a hematologic malignancy. Among patients with cancer, 27.8% died or entered hospice versus 25.6% among patients without cancer. In multivariable analyses, the odds of death/hospice were similar (odds ratio [OR], 1.09; 95% confidence interval [CI], 0.65-1.82). The odds of intubation (OR, 0.46; 95% CI, 0.28-0.78), shock (OR, 0.54; 95% CI, 0.32-0.91), and intensive care unit admission (OR, 0.51; 95% CI, 0.32-0.81) were lower for patients with a history of cancer versus controls. Patients with active cancer or who had received cancer-directed therapy in the past 6 months had similar odds of death/hospice compared with cancer survivors (univariable OR, 1.31; 95% CI, 0.66-2.60; multivariable OR, 1.47; 95% CI, 0.69-3.16). CONCLUSION: Patients with a history of cancer hospitalized for COVID-19 had similar mortality to matched hospitalized patients with COVID-19 without cancer, and a lower risk of complications. In this population, patients with active cancer or recent cancer treatment had a similar risk for adverse outcomes compared with survivors of cancer. IMPLICATIONS FOR PRACTICE: This study investigated whether a current cancer diagnosis or cancer history is an independent risk factor for death or hospice admission in hospitalized patients with COVID-19. Active cancer, systemic cancer therapy, and a cancer history are not independent risk factors for death from COVID-19 among hospitalized patients, and hospitalized patients without cancer are more likely to have severe COVID-19. These findings provide reassurance to survivors of cancer and patients with cancer as to their relative risk of severe COVID-19, may encourage oncologists to provide standard anticancer therapy in patients at risk of COVID-19, and guide triage in future waves of infection.


Subject(s)
COVID-19 , Neoplasms , Adult , Aged , Aged, 80 and over , Female , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Neoplasms/complications , Neoplasms/epidemiology , Risk Factors , SARS-CoV-2
19.
Ann Intern Med ; 174(6): 794-802, 2021 06.
Article in English | MEDLINE | ID: covidwho-1069941

ABSTRACT

BACKGROUND: Little is known about clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in acute care hospitals. OBJECTIVE: To describe the detection, mitigation, and analysis of a large cluster of SARS-CoV-2 infections in an acute care hospital with mature infection control policies. DESIGN: Descriptive study. SETTING: Brigham and Women's Hospital, Boston, Massachusetts. PARTICIPANTS: Patients and staff with cluster-related SARS-CoV-2 infections. INTERVENTION: Close contacts of infected patients and staff were identified and tested every 3 days, patients on affected units were preemptively isolated and repeatedly tested, affected units were cleaned, room ventilation was measured, and specimens were sent for whole-genome sequencing. A case-control study was done to compare clinical interactions, personal protective equipment use, and breakroom and workroom practices in SARS-CoV-2-positive versus negative staff. MEASUREMENTS: Description of the cluster, mitigation activities, and risk factor analysis. RESULTS: Fourteen patients and 38 staff members were included in the cluster per whole-genome sequencing and epidemiologic associations. The index case was a symptomatic patient in whom isolation was discontinued after 2 negative results on nasopharyngeal polymerase chain reaction testing. The patient subsequently infected multiple roommates and staff, who then infected others. Seven of 52 (13%) secondary infections were detected only on second or subsequent tests. Eight of 9 (89%) patients who shared rooms with potentially contagious patients became infected. Potential contributing factors included high viral loads, nebulization, and positive pressure in the index patient's room. Risk factors for transmission to staff included presence during nebulization, caring for patients with dyspnea or cough, lack of eye protection, at least 15 minutes of exposure to case patients, and interactions with SARS-CoV-2-positive staff in clinical areas. Whole-genome sequencing confirmed that 2 staff members were infected despite wearing surgical masks and eye protection. LIMITATION: Findings may not be generalizable. CONCLUSION: SARS-CoV-2 clusters can occur in hospitals despite robust infection control policies. Insights from this cluster may inform additional measures to protect patients and staff. PRIMARY FUNDING SOURCE: None.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Cross Infection/epidemiology , Infection Control/methods , Infectious Disease Transmission, Patient-to-Professional , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Boston/epidemiology , COVID-19 Testing , Case-Control Studies , Disease Outbreaks , Female , Humans , Male , Personal Protective Equipment , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL